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ABSTRACT

2 This thesis pertains to the area of systematic error

recovery for the National Supply System. By techniques

applied to real stock numbers a correction algorithim is

successfully developed. The main research area for this

thesis is that of algebraic coding theory,especially

Reed-Solomon codes and their application for the National

Supply System using finite field theory and the RS code over

GF( 11).

The findings of the research are also discussed for a

possible database interface. This product of the study may

be used to assist supply officers and other officials devel-

oping an error correction mechanism in order to have a more

reliable and efficient supply system.
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I. INTRODUCTION

A. BACKGROUID

After World War II, a very important issue in the war

was realized which, if used effectively, would bring the

victory: Logistics.

One result, arising out of the second World War, has

been the existence of two super powers in the world. Eaich of

them has its own political, military and economic view-

points. As a result of this, the NATO (North Atlantic Treaty

Organization) has been established by the United States and

some of the European countries who believe in the power and

necessity of freedom. Since then, these members of NATO have

worked together to provide required materials, military aids

and education to each other, in order to develop a powerf'il:

and strong defense system against possible future threats.

During.this development, a supply system has been needed

to provide countries with required items in some designated

time. The Supply System of the United States has been

approved as the Supply System of NATO with some minor

changes. Nowadays, most of the NATO members use this system

as their own National Supply System.

However, from the establishment of NATO to the present,

there has been no study about providing an error detection

and correction mechanism in order to have a more reliable

and efficient system.

The fundamental problem of communication is that of

reproducing at one point, either exactly or approximately, a

message selected at another point. The significant aspect is

that the actual message is a selected message from a set of

possible messages. The system must be designed to operate

for each possible selection, not just the one which will

actually be chosen [Ref. 11. A National Stock Number (NSI),

9



can be considered as a message for this purposes. This

thesis develops an error correction coding system for NSN's

which allows correction of a broad class of errors.

B. GENERAL VIEW OF A SUPPLY SYSTEM

The existing supply system is a kind of bridge between

resources and requirements by providing material at the

required places at the required times. Therefore, the speed

and accuracy of the supply are very important. In order to

identify a specific item in the stock, it is necessary to

provide an identifier and material classification.

1. Material Classification

There are over four million items in the United

States Department of Defense Supply System. The Navy Supply

System alone stocks over one million items. If we consider

all NATO member's stocks, the size of the system would be

staggering. For proper requisitioning of an item, a common

language has been developed: the Federal Catalog System

(FCS). The most important component of this system is the

NSN.

2. National Stock Number (NSN)

A NSN is a 13 digit number assigned by the Defense

Logistic Services Center (DLSC) to identify items of

material in the Supply Distribution System of the United

States. It consists of a four digit Federal Supply

Classification Code (FSC), a two digit National Codification

Bureau Code (BC), and a seven digit National Item

Identification Number (NIIN). The NIIN part of a NSH is the

mcst significant part and is used to uniquely identify each

NSN item in the Federal Supply Distribution System [Ref. 2]

Construction of a NSN can be seen in Figure 1.1.

10
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4110-00-1234567 ==> 1SN

FSC BC NIIN

Figure 1.1 Construction of a NSN

3. Nato Stock Number

As mentioned earlier in this chapter, the main logic

for the Nato Supply System is almost the same as in the

National Supply System of the United States. The only

difference is the names of the three parts existing in NSN.

The corresponding names are explained in Table I.

The main difference is a two digit Country Code

(also called Source Code) assigned for each NATO member

instead of National Codification Bureau Code in the National

Supply System. As an example, 00 and 01 represent the United

States in this classification.

C. PURPOSE OF STUDY

The subject area of this thesis, the theory of error

correcting codes, started as a subject in Electrical

Engineering with Shannon's classic papers in 1948 and 1949.

It has since become a mathematical topic and a part of the

fascination has been the use of many varied tools to solve

practical problems in coding. The possibility of applying

finite field theory to problems in discrete communication

was recognized in the late 1950's. One such class of codes

which is very famous and popular in this area is th2

Reed-Solomon (RS) codes. These codes are chosen to built an

error recovery mechanism in this thesis because of their

effectiveness and ease of use.

11



The goal of this thesis is to provide an error recovery

method for the existing Supply System using recent tools in

the Computer Science area, such as data base applications,

and combining them with the Reed-Solomon codes application.

In an effort to assist the reader in simplicity and

comprehension of this abstract subject, this author has

taken the pertinent information vital to the thesis and

created a chapter for each. After the general view of the

supply system is introduced in this chapter, the necessary

fundamentals of finite fields and algebraic coding theory

are presented in Chapters II and III. In Chapter IV the

presentation of Reed-Solomon codes is made and the implemen-

tation theory is discussed in Chapter V. Implementation of

the RS codes to the existing system is presented in Chapter

VI. Finally, a possible interface between users and an

existin~g database is described in Chapter VII using the

implementation of Reed-Solomon codes discussed in Chapter

VI. Conclusions of the thesis are represented in Chapter

VIII.

TABLE I

CORRESPONDING NAMES IN NATO SUPPLY SYSTEM

Name Field in NSN Corresponding in Nato Supply System

Federal Supply Nato Suppl Classification
Classifica ion (FSC) (ISC)

National Codifica. Nato Source (Country) Code
BUREAU Code (BC) (C)

' "ational Item Ident. Hato Item Identification
;umber (NfI HI) Number (II III)

A,!, A.



II. ALGEBRAIC CODING THEORY

A. CODING WITH ALGEBRAS: LINEAR CODES

1. Vector Spaces

A vector space Vn(K) of dimension n is a set of n

long vectors V = (v I , v2 , v3 , ., vn ) of elements in some

field K and V forms an additive commutative group that also

admits multiplication by scalars or elements from the field

K. The rules for this scalar multiplication are;

If a, b ( K , vi  V then

* a*V i V ; 1*v = v ; a*(b*v) = (a*b)*v

* a*(v I + v2 ) = a*vI + a*v2

* (a + b)*v = a*v + b*v
Addition of two vectors v, and v2 is by component-

wise addition by the addition defined in the field K. As an

example if Vn(K) is the set of binary n-tuples, then K is

the scalars, the elements 0 and 1 of the field of 2

elements.

2. Related Definitions

Linear Dependence: If V is a vector space and K is

the sca.lar field, then a set of e vectors, vl,v 2 . . . . . . ve ,

are said to be linearly dependent over K if there exists a

set of scalars, ci,c 2 ,. .,ce, not all of them zero, such

that;

c I * v I + c2 * v 2 +. + ce * v e = 0

Linear Independence: If the set of e vectors is not

linearly dependent, i. e. there do not exist scalars

cl,c 2, .-. ce such that

ci*v i =0

then the vectors are said to be linearly independent.

13



Dimension ._I . Let in be the largest number of

linearly independent vectors of V. The dimension of V is m.

B. GENERATOR MATRIX

Let A be an (n,k) group code. Choose k linearly indepen-

dent vectors of A. Write these out as rows. The k rows form

a (k*n) matrix G called the generator matrix for A. Every

code vector is some linear combination of the rows of G.

This matrix description serves as a compact list of all

code vectors. For example a (13,11) code can be described by

a 11*13 t-ary matrix while the code contains tI I vectors

where t is the size of the underlying field K.

1. Alternate Descriptions. Parity Check Matrix

If a = (ai) and b = (bi) then , we introduce the dot

product (scalar product) of the two n-long vectors a and b,

(a.b) as
r.

(a.b) = >__ ai.b i  (2.1)

It should be remembered that, sums and products are

performed in K, which was introduced as the underlying

field. If a.b = 0 then a is said to be orthogtonal to b.

Now, let us consider a matrix H, which is a (n-k *

n) matrix, whose rows are linearly independent.

Let V 1 be an orthogonal space to H, that is, a ( V1

-- > a.uj = 0, j=1,2,. . . n-k where uj is a row in V. In

matrix notation aHT, 0 (a is a 1*n vector here; T signifies

transpose). H is called the Parity check matxix to V I . We

first note that if a is orthogonal to the vectors (rows) of

H, it is orthogonal to the vector space spanned by these

vectors (by forming linear combinations of these vectors).

We will illustrate by the following example how a parity

check matrix can be obtained:

14



Example _1.1: Let H be defined as,

I 11100101
H= 1 1 0 0 1 0 1

S10 0 10 1 0110010101

In this example H is a (3*7) matrix. Then V 1 is a

(7,4) group code containing the all one vector. We can also

say that, the (13,11) code discussed in this section

requires only a (2*13) parity check matrix for its descrip-

tion. An example of an important code obtainable using

vector space or matrix methods is the Hamming code.

C. CODING WITH FINITE FIELDS: BINARY CYCLIC CODES

The most important group codes are the cyclic ones.

These codes are distinguished by their ease of encoding and

by the highly algebraic mechanizable approach to their

decoding.

The first discovery in this area was made by

Bose-Chauduri and Hocquenghem independently. But the

approaches, introduced by these two, has minimal error

correcting capability [Ref. 3]
Nowadays, there are many approaches to the exposition

and treatment of these codes. However, certain mathematical

knowledge and tools are required. For that reason, we intro-

duce some more details before examining a most useful set of

codes in this area , Reed-Solomon codes, in Chapter IV.

1. Finite Difference Eauations

One of the most common approaches to cyclic codes is

via finite difference equations. This approach represents

one particular way of encoding that results in systematic

cyclic codes. A major advantage of this approach is that,

the encoding of cyclic codes becomes very natural and the

decoding procedures emerge as a direct consequence.

Let us consider a finite difference equation of

degree k, with constant coefficients in the field F:



a'.+k + ulan+k 1 + u2an+k2 + + Uk-lan+1 + Ukan = 0

;where ui  F , n = 0,1,2,3,.

We wish to solve the above difference equation,

given k initial values; a0 ,a ,,a2 . . . ak ( F. A general

approach to the solution is illustrated in the following
* examplie.

Example 3.Z: In this example we show that, the

codeword (or output word) can be obtained by using the given

finite difference equation and the given initial values. We

say, an+3 + an+l + an = 0 is the finite difference equation

and a0 = 1, aI = 0, a2 = 1 are the initial values. The

required operation could be performed over F, the field of 2

elements, in following way;

a3 = a0 + a1 = 1 + 0 = 1 --> a3

a4 = a1 + a2 = 0 + 1 = 1--> a 4

a 5 = a2 + a3 = 1 + 1= 0--> a5

a6 = a3 + a4 = 1 + 1= 0--> a6

a7 = a4 + a5 = 1 + 0 =1--> a0

a8 = a5 + a6 = 0 + 0 = 0 -- > a1

a9 = a6 + a7 = 0 + 1 = 1 -- > a2

al0
= a7 + a8 = 1 + 0 = 1 -- > a 3

and as it turns out, the sequences an obtained by this
method are ultimately periodic.

Then the codeword obtained by performing this opera-

tion is 1011100 repeated periodically. We will use shift

registers to provide the encoding process for this example.

F-eIr the above problem, it is clear that, ak_1 = ak-2 + ak 3

a-,d we also know the initial values. All we need to do is,

16
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construct a cycle in which the kth element of the code will

calculated just by adding previous register values. We use

the given formula, when building the shift register diagram

as represented in Figure 2. 1.

+ __-- a 1--> ak2 I--> -outputi

(1) (2) (3)

STEP #: POSITION #: OUTPUT

#1 #2 #3

Initial 1 0 1 -

1 1 1 0 1 ---> a0

2 1 1 1 0 a,

3 0 1 1 1 > a2

4 0 0 1 1 ---1 > a

5 1 0 0 1 --- > a4

6 0 1 0 0 --- > a5

7 1 0 1 0 --- > a6

8 1 1 0 1 > a0

CODEWORD (OUTPUT) : 1011100. .

Figure 2. 1 Shift Register Application

D. (N,K) CYCLIC CODE

We have, via the recursion polynomial f(x), a natural

mapping of k-tuples into n-tuples, given by the recursion

rule (or difference equation):

17



aO , al,. . ,ak...1---- > ao,. ,ak-l,ak. an- 1

where the a4 are given by the difference equation. This

mapping is linezr, i.e. , preserves the group structure. The

number of distinct initial a's is 2k and the linear property

states, if a arises from (a O , a,, . ak..) and b from

(L0, bl,. .- bk-1), then a+b arises from (aob 0 ,al+bl,.

.,ak.l+bk-l). Thus we have generated an (n,k) group code.

This particular group code is cyclic in the sense that, if a

= (aO , a,.... an) is a codeword, any word obtained by

cyclically shifting -a by a position to the right or left

along this sequence is also a codeword. That is, (a,, a2,.

an 1 ,ao), (a 4 , a5 , ., a0 , a1 , a2 , a3 ), etc. , are also

codewords.

The conclusion is straightforward. If we choose any

polynomial f(x) of degree k with coefficients in GF(2) and

with no repeated roots, which divides xn , but not xm+l, m

< n, then by forming the associated difference equation, we

have a means of generating an (n,k) group code.

Example 1._: Let f(x) = x 3 + x + 1. f(x) is a factor of

x7 + 1. The associated difference equation will give rise to

a (7,3) cyclic code, where for example 111 ----- > 1110010.

Any other nonzero condition yields a codeword which is a

cyclic shift of the given codeword.

Figure 2.2 shows how we produce this expansion. All we

need to do is, sum up the last two digits, write down this

sum as a new digit (to the left side), and shift all digits

one position to the right. The codeword is obtained from

first digit to seventh digit , i.e., from left to right.

Cyclic codes are useful for the ease of the encoding

processes as they are easily mechanized by shift register

devices. The cyclic property clearly minimizes storage

facilities. Further these codes are easily analyzable, and

also have very efficient decoding properties. The decoding

18



STEP #: POSITION OUTPUT:

Initial iI - C

Shiftl 011 1 0

Shift2 001 1 D

Shift3 100 1 E

Shift4 010 0 W

ShiftS 101 0 0

Shift6 110 1 R

Shift7 ill 0 D

Figure 2.2 Creation of a Codeword

also proceeds via a shift register algorithm. We omit the

details of the general shift register decoding here and

illustrate the decoding in a specific instance later.

19



III. FINITE FIELD THEORY

A. BACKGROUND

Finite or Galois fields (named after the nineteenth

century French mathematician Evariste Galois) play many

important roles in signal processing and information theory

applications. However, in this thesis we are concerned only

with their use in the construction of Reed-Solomon error

correcting codes. We. begin with the general definitions in

order to understand the pertinent facts regarding finite

fields.

B. CONSTRUCTION

1. Definitions

A field is a set of elements, including 0 and 1, any

pair of which may be added or multiplied, (denoted by + or

*, respectively), to give a unique result in the field.

The basic building blocks are the prime fields F

,where p is a prime number. Fp is the field whose elements

are 0,1,. . .,p-l, and arithmetic is performed modulo p. The

additive structure is that of the vector space defined in

the previous chapter.

The addition and multiplication are associative and

commutative, and the multiplication distributes over addi-

tion in the usual way: u*(w+v)=u*w+u*v. Every field element

u has a unique negative -u such that u+(-u)=O. Every nonzero

field element u has a unique reciprocal field element 1/u,

such that u*(I/u)=l. For every field element u,

O+u=u=l*u, and O*u=O. Thus the numbers 0 and 1 are the addi-

tive and multiplicative identities, respectively.

The order of the field is the number of elements in

the field. If the order is infinite, the field is called as

an infinite field and if the number of elements is finite,

we call the field a finite field.

20



C. MULTIPLICATIVE STRUCTURE

Let F be a finite field with q = pm elements. Theq
nonzero elements of Fq form a commutative group, (Fq),. of

order q-1, which is in fact a cyclic group under multiplica-

tion. Finite fields can be constructed as polynomial alge-

bras by defining multiplication as polynomial

multiplication. If we start with two polynomials f(x) and

g(x) of degree less than n, then their product f(x)*g(x)

when formed in the usual way is not necessarily a polynomial

of degree less than n. In order to satisfy closure, we write

[f(x)*g(x)] modulo P(x) where P(x) is an irreducible polyno-

mial of degree n over the field. An element of multiplica-

tive order q-l, that is, a generator of the group (Fq)*, is

called a primitiv" root.

It thus follows that every element a in (Fq)* satisfies

aq - I = 1, and so every element in Fq satisfies aq = a. If Fq

is viewed as a subfield of Fqm for some m, then the equation

characterizes Fq, that is, aq = a iff a is an element of F.

In other words, the multiplicative group of nonzero field

elements is cyclic, i.e., it is a gr-oup h:iat consists of all

the powers of one of its elements, a. ',.ultiplication can

alternatively be defined as al*a, = a " where i+j is

computed modulo (pm-1 ) and a is the generator of this group.

D. THE MINIMAL POLYNOMIAL

The minimal polynomial of a is defined to be the moiiic

polynomial f(x) of least degree with coefficients in F such
p

that f(a) = 0. Over Fp f(x) is ,ureducible, but In the

larger field F0 f(x) factors into ':near factors:

f(x)=(x-a)( x-aP) .. .( x-aP  )( .i

where k is called the de'jree of a at,- thus the d-egree

f(x) is the same as the degree of a.



If a is a primitive root in Fpm, the minimal polynomial

of a is called a primitive polynomial over F. It is often

convenient to reverse this process and use a primitive poly-

nomial to construct a field.

1. An Ex-ample Of The Creation Of a Field

Consider the Galois field GF(24 ). It has 2 elements

and may be constructed as the field of polynomials over

GF(2) modulo the irreducible polynomial 1= x + x4 . If we let

b represent a root of this irreducible polynomial, then it

is also a primitive element of the field. Field addition of

the elements is bit-by-bit modulo 2 addition while multipli-

cation of the elements is described using the primitivity of

the element b. Thus, bi*bJ=bi+j where i+j is reduced modulo

15, if necessary.

After defining the addition and multiplication over

GF(24 ), we are ready to create the field. First, we need to

have a primitive polynomial which will be order of 4. We

will select the primitive polynomial as f(x)= x4 +x+l. The

operations which are required to create the field elements

can be performed as

f(b)= 0 ==> b 4 = b + 1

b 5 = b 2 + b

b 6 = b 3 + b 2

b 7 = b 3 + b + 1

I b 14 = b3 + 1

mmb 1 5 = 1

b 1 6 = b

b 1 7 = b 2



b1 8 = b
3

b 1 9 = b 1 6 + b 1 5 = b + 1 b4

The field elements are listed in Table II.
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TABLE II

REPRESENTATION OF GF(2
4)

Field element b Polynomial 4-Tuple

0 - - - - - -0000

bo1 0001

b1  b 0010

b2 0100

b3  b3  1000

b4b +1 0011

b5 b 0110

b6 + 1?1100

b7tl b +1 1012.

b8I 1 0101

b9  + b 1010

b+o b +1 0111

b5 + b+b 1110

b2+b +1 1111

b13  + h+ +1 1101

b14 b +1 1001
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17. REED-SOLOMON CODES

A. BACKGROUND

Cyclic codes over an alphabet of pm symbols were origi-

nally introduced by Gorenstein and Zierler (1961) along with

an effective error correcting procedure. They also pointed

out that the Reed-Solomon burst error correcting code may be

considered as a code in this class [Ref. 41

Reed-Solomon codes are (qn-l,m) cyclic codes over GF(q n )

and were originally defined by Reed-Solomon differently than

the Gorenstein and Zierler formulations. The code RS(n,t)

is called a k error correcting Reed-Solomon code of length

n. In this definition t is the number of information symbols

in the codeword and k < n-t. These codes can correct both

random and burst errors over a communication channel and

hence are ideal for the numerous real time and reliable

communications demanded by these applications. The

complexity of RS encoders and decoders are proportional to

the error correcting capability of the code, the speed of

the decoding and the interleaving depth used.

The code RS(n,t) consists of all vectors C = (C 0 ,C1 ,.

• Cn..i( Vn(Fqm ) such that the corresponding polynomial

C(x) = - Cix i has the form C(x) = (x - a)(x - a). .(x -

a 2 t)I(x), where I(x) is a polynomial of degree < n-l-2t over

Fqm. I(x) is the polynomial of the information symbols

while (x - a) (x - a 2 ). (x- a2t is the polynomial of

the check symbols. The code has parameters:

Length : n qm-i

Dimension : k = n - 2t

Min. distance: d = 2t + 1

.p
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B. GENERAL ENCODING PROCESS

As mentioned earlier, Reed-Solomon codes are cyclic

codes over GF(q"). Let a0 , al, .. . . a_ 1 be elements of

GF(qn), then the code is defined in a non-systematic way as

follows:

a(x) = a0 + alx + + amlxm-l (4.1)

We let c be a (qn-l)th root of unity. We define b = (: 0 ,
b I .. . ,bqn2 ) to be the vector whose coordinates are given

by b i = a(c l ) , i = 0, 1, . . qn- 2 . The code map (a0 , a2 ,.

.,am_,) --- > (b0 , bl,. . ,bqn 2 ) gives rise to a (qn-,m)

code with maximum distance d > qn - 1 - (m-1) = qn - m which

will correct errors up to

e < (qn _ m)/ 2 (4.2)

Here the length of the codeword is qn -1 and the field

in which the symbols lie is GF(qn). For any vector a in

Vqnl(qn), the codeword associated with a(x) ( ga(x) is

written very simply;

ga(x)=c0 + clx +. .+ ( )X q n -2 (4.3)

The recursion rule or polynomial associated with the code

is;

V& (x -ci f(x) (4.4)

The Reed-Solomon code may thus be encoded systemati-

cally.

1. General Encoding Alqcorithm

As discussed in Chapter III, an (n,k) code can be
generated by a polynomial of degree n-k. If the polynomial
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is primitive of degree r and n = 2 r_,, the code can be

encoded and decoded with primitive shift registers [Ref. 51.

Hence, we restrict our attention solely to the case of prim-

itive polynomials. We illustrate the required algorithm for

encoding of RS codes using primitive polynomials as follows:

1. Represent the message as a polynomial. Call this poly-

nomial m(x). Degree of m(x) is at most k.

2. Multiply m(x) by xn-k to shift the message digits to

the far right.

3. Calculate the remainder when xn-k m(x) is divided by

p(x). (Note that p(x) is the primitive polynomial).

4. Form the code polynomial as the sum xn-k m(x) + r(-x),

(r(x) is the remainder of the division). The check

polynomial is actually then a multiple of p(x).

C. GENERAL DECODING PROCESS

The problem for decoding is to find the error positions

and symbol changes. There are two decoding procedures avail-

able to do this. The first of them requires finding the

coefficient matrix which will determine the symmetric func-

tions of the error positions, @, or finding the appropriate

augmented matrix and computing the syndromes, (Sj), for j >

do. The second method will not be addressed in this thesis.

1. General Decoding Alcrorithm

The decoding of an RS code is composed of the

following six steps. For this algorithm, the input is the

received vector R and the output is the codeword C.

1. Compute the syndromes, using the equations:

= f-i

ISj Riaj, j = 0,1,2. . . 2t-l. (4.5)
j=0

-2t

2. Perform Euclid's algorithm on x2 t and S(x) = S1 + S2t

+ + S 2 tx-. Stop as soon as the degree of the

remainder rj < t. Use the same algorithm to determine

2 7



the coefficients of the error locator polynomial @(x).

Then calculate w(x), the error evaluator polynomial,

using the fact, @(x).S(x) = w(x) (mod g(x)), where

g(x) is an irreducible polynomial over the field.

3. Find B = b ( Fqm : @(b) = 01, by trial and error

method.

4. For each b ( B , set Eb = w(b)/@'(b) where @'(b) is

the formal derivative of @(b).

5. For each i = 0,1,. . ,n-1 , set

0 if a-i /B,

Eb if a- i f B.

6. Output the codeword by subtracting the error vector Ei

from the received vector Ri;

C = (RoE 0 , RI-E 1 . .. Rn-l-En l).

28

-S



V. IMPLEMENTATIOn THEORY

A. BACKGROUND

In this chapter we look at the theoretical concepts

behind the creation of a particular finite field and

construction of a specific RS code. As mentioned in Chapter

I, a NSN (National Stock Number) consists of three basic

units and one of them is NIN (National Item Identification

Number). It has also mentioned that the NIN part of a

stock number is unique for each supply item. Thus, we will

consider only the NIN part of the stock number when we

construct our coding scheme in the subsequent chapter.

There are seven digits in the NIN part of the stock

number. These symbols will be the information symbols in the

codeword. We also, in this chapter, discuss the number and

the types of the errors we consider for the correction

process. That is, we decide how many error check digits we

must have in the codeword. We also introduce the order and

construction of the finite field we use for our particular

application. Since the symbols are not binary, the

Reed-Solomon codeword we will design contains symbols which

lie in a larger field than GF(2). In particular, since the

symbols are digits, the field will have to have at least 10

elements. As the size of field must be a power of a prime

number, we shall use a field of 11 elements.

We also, in this chapter, discuss and decide upon the

generating polynomial g(x) and find a primitive root of

unity (generator), a, for our construction of the

Reed-Solomon code.

B. ERROR CHECK DIGITS

Before going further with the discussion and construc-

tion of the finite field we shall need, it is necessary to

N.., 9
5'
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find out the number of error check digits which will be used

in the codeword. Our coding scheme will be an interface

between users and computers. In order to figure out the

number of check symbols, we consider the common type of

errors which are most likely to be made by humans. When

dealing with humans, three types of errors are common

[Ref. 6]

1. People have a tendency to interchange adjacent digits
of numbers; for examp e 67 becomes 76.

2. Another common error is to double the wrong one of a
triple of digits, two adjacent ones of which are the
same; for example 667 becomes 677 merely by a change
of one digit.

3. A third kind of simple error is just the substitution
of one symbol for another.

These are the most common errors in arithmetic. We will

provide for the correction of two errors in our application.

This will handle the. first one of these common errors as

well as the other errors mentioned. So, the maximum

distance required as discussed previously can be found by

applying the equation;

do > qn _ m = qn . 7 (5.1)

where m represents the number of information symbols in the

codeword. In the NIN portion of the message, there are 7

digits present.

Since we want to correct up to two errors, according to

the equation 4.2 which we introduced in Chapter IV;

e < qn/2 - m/2 > 2 ==> qn > II (5.2)

Accordingly we have found from the above equation, we

will choose GF(11) for our application. Here, q = 11 and n =

1, and the computations will be in arithmetic modulo 11. To

make this approach clear, we illustrate addition and multi-

plication over GF(11) in Table III and Table IV respec-

tively. The symbol A is used to represent the digit 10.
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Our findings from equation 4.2 show that, we will have

four error check digits in the codeword. One of these (the

last one on the right) is the parity check digit. Parity

checking for this type of coding scheme provides the total

error amount occuring in the codeword computed modulo 11.

It is obvious that, if this error amount is zero, there are

several possible cases to be considered. Either no error

occured, or there are some interchanged bits in the code-

word, or the total error amount is a multiple of 11.

Therefore we provide a decoding process by calculating all

the syndromes first.Then the error correction procedure is

as described in the decoding procedure of Chapter IV and

more precisely in Chapter VI.

C. GENERATING POLYNOMIAL

As mentioned in the previous chapter, the generating

polynomial for the RS code is described by the equation:

g(x) = (x - b)(x - b2 ). . . (x - b2 t- ) (5.3)

where t is the error correcting capability of the RS code

and b is a primitive root of unity (generator). The signifi-

cant point here is to find the generator element first in
order to determine the generating polynomial according to

equation 5.3. Since the RS code is cyclic; the powers of a

primitive root should generate all the roots of unity. In

other words, the powers of the generator should generate all

the nonzero elements of the finite field, namely GF(11).

It can be determined that 2 is a generator, by trial and

error method. For GF(1) the verification that 2 is a

generator is shown in Figure 5. 1. Since we have the gener-

ator 2 and we have already decided the error correcting

capability of the code, (2 error correction) we are now able

to calculate the generating polynomial.
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TABLE III

ADDITION OVER GF(11)

+ 0 1 2 3 4 5 6 7 8 9 A

0 0 1 2 3 4 5 6 7 8 9 A

1 1 2 3 4 5 6 7 8 9 A 0

2 2 3 4 5 6 7 8 9 A 0 1

3 3 4 5 6 7 8 9 A 0 1 2

4 4 5 6 7 8 9 A 0 1 2 3

5 5 6 7 8 9 A 0 1 2 3 4

6 6 7 8 9 A 0 1 2 3 4 5

7 7 8 9 A 0 1 2 3 4 5 6

8 8 9 A 0 1 2 3 4 5 6 7

9 9 A 0 1 2 3 4 5 6 7 8

A A 0 1 2 3 4 5 6 7 8 9
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TABLE IV

MULTIPLICATION OVER GF(11)

0 1 2 3 4 5 6 7 8 9 A

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 A

2 0 2 4 6 8 A 1 3 5 7 9

3 0 3 6 9 1 4 7 A 2 5 8

4 0 4 8 1 5 9 2 6 A 3 7

5 0 5 A 4 9 3 8 2 7 1 6

6 0 6 1 7 2 8 3 9 4 A 5

7 0 7 3 A 6 2 9 5 1 8 4

8 0 8 5 2 A 7 4 1 9 6 3

9 0 9 7 5 3 1 A 8 6 4 2

A 0 A 9 8 7 6 5 4 3 2 1
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The generating polynomial can be obtained with reference to

the equation 5. 3 and Figure 5. 1 in the following way:

g(x)= (x - bl)(x - b2)(x - b 3 )

= , - 2)(x - 4)(x - 8)

= (x 2 
- 6x + 8)(x - 8)

So.. the generating polynomial is described by the equa-

tion;

I g(x) = 3 - 3x 2 + x + 2 (5.4)

where sums and products are computed modulo 11.

b63

b 9 8 7 6 5 4 3 2 1

2b 29 28 2 7 26 25 24 23  22 21 20

VALUE 6 3 7 9 A 5 8 4 2 1

Figure 5. 1 Verification of the generator b = 2
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D. DECODING TOOLS

I. S 4ndromes

In chapter IV, we introduced the general syndrome

calculation for the Reed-Solomon code by the equation;
n-i

S= Ria-J1 , j = 0,1,2... 2t-1 (5.5)

where a represents the primitive root of unity (generator)

and t represents the error correcting capability of the RS

code. Referring to equation 5.5, we will have four syndromes

namely So l Si t S21 S3. The first syndrome, So , will show us

the error amount occuring in the codeword. The last digit of

the codeword, the one we appended for parity checking,will

only be used in calculating the syndrome value So l We will

not use the last digit for calculating the other three

syndromes SI , S2 and S3 .

2. Conditions of Syndromes in Case of Errors

After calculating the syndromes, we will be able to

examine the received codeword and make some decisions about

it. From the syndromes SO, S1, S2 and S3 it is possible to

find and correct up to and including any two symbol errors

according to the following descriptions.

In case of no error, all the syndromes will be equal to

zero.

S =S I =S 2 =S 3 = (5.6)

In case of one error, the syndromes have the property of

so = ek

S = eak = ek2k

11 k2k
S= eka =-k
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S3 = eka3k = ek23k

where ek is the error amount occuring in the kth digit. So,

the equality we will be looking for in case of one error is

SI/S 0 = S = S = 2 k (5.7)

Thus the location of the error is determined by Sl/S0 =2

the kth digit and the amount of the error is So = ek-

In case of two errors, the syndromes are given by

0 ek el

1 e1Sl= ak + ela l

S2 =eka

S3 =eka3k + ela31

where the two errors are ek and el occuring in the kth and

1th digit of the codeword, respectively. The inequality we

will consider in case of two errors is

sl/s 0 r s2/s1 / S3 /S 2  (5.8)

That is, not all of SI/So, S2 /S 1 and S3 /S2 are equal. In the

next section we give the procedure to determine the loca-

tions of the errors in case of two errors.

E. DECIDING ON THE POSITIONS OF ERRORS

Once the syndromes are calculated, we are able to decide

on the positions of errors occuring (if any). But, it is

required to have an equation to do that which will ha;e only

1 and k (the positions of errors) as unknowns. Such an

equation can be obtained in the following way:

The syndromes have been determined as

so= e + d

16
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S1 = e2 k  + d2 l

S2 = e22 k + d22l

S3 = e2 3 k + d2 3 1

where e and d represent the error amounts and k and 1 repre-

sent the error positions, respectively.

Now, we multiply the syndromes S1 and S3 forming

SIS 3 = e
2 24k+d 2 24l+ed( 2 k2 3l+ 212 3k)

= e2 24 k+d 224 l+ed2k+l(2 2 1+22 k)

Next we form the square of the syndrome S2 ;

(S2)2= e2 24 k+d2 24 1+ 2ed2k+l( 2 k+l)

When we subtract (S2 )
2 from SIS3 we obtain

SiS 3 -(S2) 2=ed2 k+l(- 2 (2k2 l)+2
2 1+22 k)

And finally we get the equation

S1 S3 -S2 2=ed2k21(21-2k)2  (5.9)

In the following steps, we substitute e and d in equa-

tion 5.9, so that we get an equation including only k and 1

as unknowns. First, by referring to the first syndrome So,

it can be derived that, e = SO - d. When we substitute this

value of e in the second syndrome equation, we get

(S o - d)2 k + d21 - S1 = 0

d(2 1 
- 2 k) + s0 2 k - S1 = 0

So, the value of d can be obtained as
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d = (S1- 2 So) / (2 - ) (5.10)

Now, we substitute the value of d obtained in equation

5.10, into equation 5.9 yielding

SIS3 - ($ 2 ) 2 = e[(Sl-S0 2k) / (2 1-2 k)] 2 k2 1 (2 1-2 k)2

= e(SlS 0 2k) 2 k2l( 2 1- 2 k)

Now using again the equation, e = So - d, the value of e

can be calculated as;-

e = (S0 2
1 - S I ) / (21 - 2 k) (5.1)

Now, we substitute equation 5. 11 into equation 5.9;

SIS3 -(S 2 ) 2 - (S021 - Sl)(S I - s02 k) 2 12k

= (S021 - SI) 21 (S - s 0 2 k) 2k

Finally, we get the equation;

S 1 S 3 -S22=( S0 2
2 1_S12 )(s 1 2 ks 0 2 2k)

As seen in the above equation, the only unknown terms are,

the error positions k and 1. We use this equation to locate

the error positions by a trial and error procedure in the

subsequent chapter.
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VI. IMPLEMENTATION

A. BACKGROUND

The fundamental and necessary concepts for constructing

an RS(11,7) code are discussed in the previous chapter. Our

findings from Chapter V are used in this chapter to imple-

ment the RS(11,7) code. We use the generating polynomial,

primitive root of unity, syndromes and the relationship

between the positions of the errors occuring as we found and

discussed them in Chapter V.

We also, in this chapter, provide the encodin3  and

decoding algorithms in more detail and also illustrate some

examples to show their application.

B. ENCODING PROCESS

As discussed in chapter IV, the RS codewords are formed

as multiples of the primitive generating polynomial g(x). As

g(x) is of degree r, there are n - r = k information symbols

which can be chosen freely. Then r check symbols are deter-

mined so that the resulting codeword satisfies the criteria

stated, namely that the codewords are multiples of the

generator polynomial. In other words, the check digits are

the coefficients of the remainder r(x) upon division of the

information polynomial p(x) by g(x) as shown in example 6.1.

Here we consider n as 10, as our codeword is of length 10.

We also append the parity check digit after we calculate the

first three check digits. So p(x) can be obtained as a poly-

nomial of degree 9 and a parity check symbol appended.

1. Encoding Algorithm

1. Represent the NIIN part of the stock number as

coefficients of the polynomial of degree 9. Call this.
polynomial p(x). Thus x3  (the polynomial of degree 1

representing the 7 digits of NIIN) is the

representation.
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Perform the required division p(x)/g(x) where g(x) is

the generating polynomial having the value of x - 3 2:c

+ x + 2.

3. Calculate the check digits as the coefficients of the

remainder r(x) upon division of p(x)/g(x) and add

these check digits to the right of the NIIN.

4. Calculate the parity check digit, by using the

*equation;
9

L __Ci + p = 0 (mod 11) (6.1)
Viz.

where p represents the parity check digit value and C

vector of first 10 digits of the codeword.

5. Append the parity check digit to the far right and

output the 11 digit number as the encoded codeword C.

Example 6.1 Now we will give an example of the encoding

4.. process by applying the encoding algorithm we developed.

Suppose the NIN part of the stock number is 0000001. If we

represent it as the coefficients of the p(x), of degree 9,

we obtain p(x) = x3 , and we satisfy step 1 of the algorithm.

According to step 2, we perform the required division of

p(x)/g(x) and get the remainder r(x) = 3x 2 
- x - 2. So, this

will give us the first three check digits as -3, 1 and 2.

Now we add these digits to the right of NIN and get C =

C00001-312. Then applying the equation 6. %, we calculate

the parity check digit p as -1, so that I C + p = 0.
" "0 1

Appending this parity check digit to the far right, yields

the encoded codeword 0000001-312-1. We use this encoded

csdeword in our decoding examples in this chapter and call

it C. When C is received, with or without errors, i : is

- called R.

4.-,
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Example . We now provide another example to

show how the required division is performed in a more

complex case. Suppose the NIIN part of the stock number is

9876543. The required division p(x)/g(x) can be seen in

Figure 6.1. Then, the check digits are obtained as A, 8, A

(A represents number 10). Applying the encoding algorithm

step 4, the parity check digit will be obtained as 7. So the

output of the algorithm is the codeword R = 9876543A8A7.

C. DECODING PROCESS

The decoding process is, in general, much more compli-

cated than the encoding process. Not only must we deal with

the detection of errors but also with their correction.

Error detection is much easier than error correction. Since

the code polynomial is a multiple of the generating polyno-

mial p(x), the received code polynomial R(x) will be a code

polynomial if and only if the remainder upon division of

R(x) by p(x) is zero.

There is only one condition for a valid codeword, that

is the equality of all the syndromes to zero. This condition

is the desired one we will be trying to satisfy throughout

the entire decoding process.

We will develop our decoding algorithm, considering the

three possible conditions which are related with the errors

occuring in the encoded codeword. They are listed below:

1. No error condition

2. One error condition

43. Two errors condition

For the first condition, we have already shown that, all

the syndromes are equal to zero. So, it is easy to determine

the no error condition. The decoded (output) codeword will

be the same as the received codewcrd. In case of one error,

it is necessary to figure out the error position first. W2
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9x 6 +2x 5 + 4x 4 + 9x3 + 2x2 + 4x +6

x3+8x 2 +x+2 9x 9+8x 8+7x 7+6x 6 +5x 5+4x 4 +3x3

-9x9-6x8-9x 7 -7x6

2x8 +9x7 +Ax
6 +5x5

-2x8 -5x 7 -2x6 -4x5

4x7 +8x6 + x5 +4x4

-4x7 -Ax6 -4x5 -8x
4

9x 6 +8x5 +7x4 +3x
3

-9x 6-6x 5-9x 4 _7x 3

2x 5 +9x4 +7x3 +0X
2

-2x5 -5x4 -2x3 -4x2

4x 4 +5x3 +7x2 +Ox

-4x 4 -Ax3-4x 2-8x

6x3 +3x2 +3x+O

-6x3 -4x2-6x- I

Ax2 +8x A

Since the coefficients of the remainder will be

the values of the first three error check digits,

they will be A, 8 and A.

Figure 6.1 Required Division for Example 6.2

will be using the equality we described for the first

syndrome S1 to decide the error position in our decoding

algorithm.
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n.Once the syndrome S1 is calculated from the equation Si

= . R12
- i we can find out the error position using the

other equation described for calculating the f-irst syndrome,

S1 = Rke k, where Rk = So and it is known. After deciding the

error position, the necessary correction process is quite

simple, as the actual error is equal to So , and it will be

explained in the decoding algorithm.

In case of two errors, the correction process is much

more complex than the other two cases. Again, we must decide

the error positions first. We use the equation described in

step 10 of the decoding algorithm to do that. After finding

out the error positions by trial and error method and the

equation of step 10, we use two different tables to deter-

mine the error amounts occuring in the kth and Ith digits of

the codeword, the determined error location points. The way

to use these two tables will also be explained in the

decoding algorithm.

We follow a systematic procedure to describe the steps

of the algorithm so that, steps number two through four are

related to the no error condition, steps number five through

eight are related to the one -error condition and steps

number nine through fifteen handle the two error condition.

Step number one, sixteen, seventeen and eighteen are the

common steps and they are used each time the decoding algo-

rithm is applied. Note: if it is determined that none of the

three possibilities is operable then we say that more than 2

errors have occured and a decoding failure is declared.

1. Decodina Algorithm

1. Compute the syndromes from the received word R:

n- L

Si = - Rj2-Ji

2. If So = 1 = S = S 3 = 0, then decide "NO ERROR".

3. Set error vector E to all O's.

43



4. Go to step 16.

5. If SI/S 0 = = then decide "ONE ERROR".

6. Calculate k, the error position, using the equation;

S = k

7. Set error vector E to;0 Ei Ek
E where i = 0,1,... 10

So  Ei =E k

8. Goto step 16.

9. If not all of S1/S0 , S2/S 1  S3/S2 are equal

then decide "TWO ERRORS".

10. Decide 1 and k, which correspond to the locations

of errors occuring, using the following equation

S1S3 -(S2 )
2 =( S0 2

2 (9 -
1 )+S12

9
- 1 )(S1 2 9-k+So2 2(9-k))

where k and . lie in the range of 0 to 9.

11. Set i to 1 which corresponds to the index of

of Table V.

12. Pick the ith pair of e,d which corresponds

to the error amount occuring using Table V.

13. Try to satisfy the equation using the present

values of e, d, k, i;

S1 = e2 9 -k + d29-1

14. If the equation is not satisfied, then increment

i by 1 and go to step 12.

If none of the values of i allow a solution

then declare that more than 2 errors occured

occured and a decoding failure results.
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15. Set error vector E to;

e E i = Ek

E= d E i = El where i = 0,1,...,10

0 otherwise

16. Output the codeword by subtracting the error

vector from received vector.

C = R - E = (Ro-Eo,..,Rlo-E1o )

17. Check syndromes again and verify that;

s o = S 1 = S2 = S 3 = .

18. Then the information symbols are

Co, CI .. ,C6.

x 0 1 2 3 4 5 6 7 8 9

2 9-x 29 28 27 26 25 24 23 22 21 20

VALUE 6 3 7 9 A 5 8 4 2 1

Figure 6.2 Values of the 2 9
-x
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We illustrate the decoding algorithm we presented in

this chapter by three examples. Each of these examples will

correspond to one of the error conditions we discussed in

the decoding algorithm.

We use the received codeword R, as mentioned in

example 6.2 throughout the examples we will present in this

section. In each case, the value of C is 0000001-312-1.

We will first begin with the no error condition:

Example 6. 3 : Suppose we have received the codeword R =

0000001-312-1. Referring to the decoding algorithm, first we

calculate the syndromes in the following way:

Received Codeword 1 0 0 0 0 0 0 1 -3 1 2 -1I

Position # (k) 0 1 2 3 4 5 6 7 8 9 10

Applying the decoding algorithm step 1, the

syndromes will be;

So  1 3 + 1 + 2 -1= 0.

S > 1 -3 1 2

23 22 21 20

8 -1 2 2 .> S1 8 1 + 2 + 2=0.
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S2 ===> 1 -3 1 2
26 24 22 20

9 -4 4 2 ....> S= 9 -4 + 4 + 2 =0.

S 1 -3 1 2

29 26 23 20

6 -5 8 2 3 =6 -5 + 8 + 2 =0.

Since So = S1 = 2 S3 = 0 , decide "NO ERROR".

Set the error vector E to all zeros;

E = 00000000000

Applying step 16 of the algorithm;

R=O 0 0 0 0 0 1 -3 1 2 -1

- E0 0 0 0 0 0 0 0 0 0 0

C=O 0 0 0 0 0 1 -3 1 2 -1

Check and verify the syndromes and output the veri-

fied codeword as C = 0000001-312-1. The information is then

determined as 0000001.
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Example _k. 4 Suppose we have received the codeword R =

0000011-312-1. Referring to the decoding algorithm, first we

will calculate the syndrontes in the same way as in the

previous exampLe.

* I

IReceived Codeword 1 0 0 0 0 0 1 1 -3 1 2 -1i

Position # (k) 10 1 2 3 4 5 6 7 8 9 0

Applying the decoding algorithm step 1, the

syndromes will be;

S0 = 1 + 1 - 3 + 1 + 2 - 1 = 1.

S= 1 1 -3 1 2

24 23 22 21 20

5 8 -1 2 2 ===> S1 = 5 + 8 - 1 + 2 + 2 = 5.

S2  1 1 -3 1 2

28 26 24 22 20

3 9 -4 4 2 > S2 = 3 + 9 - 4 + 4 + 2 = 3.

S3 ===>1 1 -3 1 2

22 29 26 23 20

4 6 -5 8 2 ==> S3 = 4 + 6 - 5 + 8 + 2 = 4.

The syndromes satisfy the condition;

SI//S 0 = S2 /S 1 = S3/S 2 = 24. Decide "ONE ERROR".
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According to the decoding algorithm step 6;

S o = E k = 1

S1 = 5 = 24 = Ek29 -k ===> k = 5.

So, decide the error position as position number 5 and the

error as 1.

Set the error vector E as described in step 7 of the

algorithm;

E = 00000100000

Applying step 16 of the algorithm;

R =0 0 0 0 0 1 1 -3 1 2 -1

- E = 0 0 0 0 1 0 0 0 0 0

C = 0 0 0 0 0 0 1 -3 1 2 -1

Check and verify the syndromes and output the veri-

fied codeword as C = 0000001-312-1. Again the information is

0000001.
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Example 6. 5 Suppose we have received the codeword R =

0001101-312-1. Referring to the decoding algorithm, we again

calculate the syndromes in the usual way.

Received Codeword I 0 0 0 1 1 0 1 -3 1 2 -1

Position # (k) -0 1 2 3 4 5 6 7 8 9 10

Applying the decoding algorithm step 1, the

syndromes will be;

S0 = 1 + 1 + 1 - 3 + 1 + 2 -1 =2

S1 ==> 1 1 0 1 -3 1 2

26 25 24 23 2 2 21 20

9 -1 0 8 -1 2 2 S 8 2 3

S2 ===> 1 1 0 1 -3 1 2

22 20 28 26 24 22 20

4 -1 0 9 -4 4 2 S2  3 28

S3 ===> 1 1 0 1 -3 1 2

28 25 22 29 26 23 20

3 -1 0 6 -5 8 2 --- > S3 = 2

Since the syndromes are not all zero and do not

satisfy the condition;

SI/SO = $2/S 1 = S3 /S 2 , decide "TWO ERRORS".

51



According to the decoding algorithm step 10;

SS 3 - 2 = 24 - (28) 2 = 4-_6= 27

We try to satisfy the equation;

27=(S022(9-1)_S129-I)(si
2 9 - k- S0 2

2 (9 -k) )

Substituting the values of So and SI, and applying

the trial and error method, the only pair of k and 1 would

be calculated as;

k=3 , 1=4

So, decide the error positions as position numbers 3

and 4.

According to step 12 of the algorithm, pick the

first possible pair of the e and d using Table V and then

try to satisfy the equation described in step 13;
S1 = e29-k + d29-1

23 = 1*29-3 + 1*29-4

23 = 26 + 25 = 8
23 = 23

So, it would take only one iteration to decide the

errors, deciding e = d = 1. Set the error vector E as

described in step 15 of the decoding algorithm;

E = 00011000000.

If e = d = 1 did not satisfy the equation, the next

pair e =3, d = A would be tried, etc.
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Applying step 16 of the algorithm;

R=0 0 0 1 1 0 1 -3 1 2 -1

- E 0 0 0 1 1 0 0 0 0 0 0

C =0 0 0 0 0 0 1 -3 1 2 -1

Check and verify the syndromes and output the veri-

fied codeword as C = 0000001-312-1. Again the information is

given as 0000001.

If more than 2 errors were made, then the above

procedure would fail and a "decoding failure" would result.

At this point a request for a retransmission would be initi-

ated by the receiver.
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VII. POSSIBLE INTERFACE FOR DATABASE APPLICATIONS

A. BACKGROUND

A The size, power and number of database management infor-

mation systems available and in use has grown dramatically

in recent years. Business, industry and government seem to

have been swept into the automation of data collections with

a fervor akin to the automation of accounting systems during

the late 1960's. As might be expected, people are once again

discovering that the old adage of "garbage in, garbage out"

continues to hold true. Although many of the errors in data-
bases could probably be caught and corrected by appropriate

V. error checking and correcting procedures, the cost for

humans to perform such checking would be very high and the

work very tedious. It makes sense to automate data storage

and management, and remove the painstaking tasks for error

checking and correcting from the human operator.

Virtually all DBMS's (Database Management System) incor-

porate in them some form of error checking facilities.

[Ref. 71. Typical checks are for proper data format

(integer, real, alphabetic, etc.), proper numeric sign, the

correct number of data items and the presence or absence of

data in certain fields. While these checks are important and

help to prevent some errors, the number of situations in

which major errors in databases have been found clearly

indicates that these checks are not sufficient. The purpose
of the error correction mechanism we described in the

previous chapters is to provide a means of error checking

which far exceeds the power of typical DBMS type of error

checking. The error correction mechanism, we introduced, can

be used both to perform error correction for pre-existing

databases, which we term the checking of of a 'static' data-

base, and to check proposed database updates before they are
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passed on to the DBMS, which we term the checking of a
'dynamic' database.

B. DATABASE ERRORS

Database errors can be divided into four types:

security, consistency, reliability and integrity. Security

encompasses the control of all unauthorized access to the

database. Both physical and logical means of access control

are usually required. Consistency deals with the problems of

errors which are introduced in the process of sharing data-

bases. These can be due to either multiple users sharing a

single database or multiple users sharing more than one copy

of a database. A database can be inconsistent when multiple

updates are processed out of sequence or the database

changes during the course of a user providing an update.

Under this definition, consistency checking involves only

the specific data. Such checking would not invoke any of the

"implied meanings" of the data, i.e the information in the

semantic description of the database. Thus, a requirement

such as an update of one item necessitating a corresponding

update of another item is not a consistency problem [Ref. 81

Reliability refers to the problems of assuring that both

the hardware and software components of the data management

system perform as they were intended all of the time.

Integrity errors include all types of errors which can be

introduced due to active use of the database system. These

may result from mundane sources such as typing or spelling

errors, transmission errors which cause the data to be

garbled or transformed between the original source and the

database system, or user misunderstandings of the nature or

content of the database.

A computer has no built-in criteria which it can use to

determine whether or not a given piece of data is correct in

a given context. Thus, if a computer is to be used to

detect and correct integrity errors, the computer must be
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provided with such criteria. The error correction mechanism

we described addresses only the detection and correction of

primarily the last of these error types, integrity errors,

although some consistency errors can be detected.

C. QUERY INTERPRETER

Before starting to explain the role of the query inter-

preter which is the existing interface between the users and

DBMS, it is necessary to identify the types of queries which

could be given to the Supply System database.

Depending upon the NATO countries in which this kind of

interface exists, the number of user queries which can be

given to the system might vary. In general, there is a range

of twenty to thirty queries which can be found in a typical

Supply System including queries for search, update, delete

etc. However, one common part of all these queries is the

NSN (National or Nato Stock Number). In other words, no

matter what the query is, there should be a stock number in

it, since the stock number is the only Rey of the database.

Thus, it would be a pretty good idea to check and then

verify the NSN before it is passed to DBMS for processing

according to the given query. This kind of checking can be

obtained via a detection and correction routine which would

be added to the query interpreter as a component.

As shown in Figure 7. 1, the checking component of the

query interpreter acts as a filter between users of the DBMS

and DBMS itself. This checking component is a 'passive'

filter in the sense that it is not visible to the DBMS users

until a potential error is detected and corrected. However,

whenever an error is detected and corrected, the system

informs the user about the correction has been made, or if

the number of errors are more than two it declares a

4 decoding failure and requests a retransmission or another

query.

5
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Figure 7.1 Possible interface between user and DBMS

Generally, writing detection routines is not difficult.

If the structure is sufficiently well understood for update

and access routines to be written, then the detection

routine can likely also be written with about the same

effort. The implementation of a correction routine is more

difficult than implementation of a detection routine. But,
for this particular application, it becomes relatively easy

using the decoding algorithm we presented in Chapter VI.

Recalling the construction of a NSN from Chapter I,

there are thirteen digits in a NSN. After the encoding

process, there are added four more digits as check digits

which makes the length of the codeword seventeen digits.
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When this encoded codeword is received with or without error

by the query interpreter, it is the correction routine's

responsibility to check and verify it using the check digits

and the decoding algorithm described in Chapter VI. In this

way, terminal operator's mistakes as well as the other type

of mistakes discu~sed as integrity errors can be detected

and corrected. After verifying the received codeword

(encoded NSN), the check digits are removed and the output

of the correction routine gives the original thirteen digit

NSN. Then this NSN and the interpreted query are passed to

the DBMS for processing. Using this kind of interface and

error checking and correcting mechanism together does not

require any change in the construction of the physical data-

base, and it provides a more efficient system in terms of

reliability, integrity and time.

58



VIII. CONCLUSION

In this thesis we have taken a modular approach to the

implementation of Reed-Solomon code in order to provide an

error correction mechanism for the existing National or NATO

Supply systems. By initially discussing algebraic coding

theory and finite field theory, we have shown that they play

an integral part in the overall implementation. The imple-

mentation theory is represented first because of its neces-

sity to understand the implementation more easily. It is

then followed by the design of the encoding and decoding

algorithms which provide two error correction for the

National or NATO Stock Number (NSN).

After defining the approach and the associated algo-

rithms, it is then followed by a possible database inter-

face. Thus the user of a database system can be supported by

this kind of interface and database system itself becomes

more reliable and efficient. The most common problems and

generai types of errors we have presented in the previous

chapter showed that, when human operators get involved with

the operation of these kind of systems, numerous types of

errors should be expected. Encoding and decoding algorithms

we presented in this thesis are developed based on the facts

that an algorithm should be satisfied in order to detect and

correct possible types of human operator errors without

costing more in terms of money and personal effort. Because

we can correct up to two errors, the reliability and integ-

rity have improved.

It is hoped that, with this thesis as a guide, some

interested supply officers or other officials will make the

necessary changes in the Supply System Database in order for

increasing its reliability and efficiency.
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